Table 1: The studies which connect the influence of climatic factors and pathogenesis of DTV. Number

Years

of study

of`

patients

Conclusions

Increased wind speed caused an increase of DVT

Geographics

areas

Climatic

factors

Wind speed

Study

Brown et al.9

DVT: deep vein thrombosis.

Bounameaux et al.1	Seasons	Geneva	1989- 1994	7303	No seasonal or monthly pattern of DVT
Galle et al. ²	Seasons	Belgium	1982- 1995	512	No seasonal pattern of DVT
Stein et al. ³	Seasons	USA	1979- 1999	-	No seasonal pattern of DVT
Lee et al.4	Seasons	Taiwan	2002	2774	No seasonal pattern of DVT
Boulay et al.5	Seasons	France	1995- 1998	65081	Winter pattern of DVT
Fink et al. ⁷	Seasons	Austria	1996- 2000	905	Seasonal pattern of DVT related to location of thrombus
Manfredini et al.8	Seasons	Italy	2002- 2004	2119	Seasonal pattern of DVT with the peak in September and October
Brown et al.9	Seasons	Scottand	1981- 2001	37336	Winter pattern of DVT
Dentali et al. ¹¹	Seasons	Meta- analysis	-	35000	Winter pattern of DVT
Jang et al. 12	Seasons	Korea	2001- 2010	1495	Winter pattern of DVT
Damnjanovic et al. ¹³	Seasons	South Serbia	2009- 2011	170	Seasonal pattern of DVT related to location of thrombus
Chung et al. ²³	Atmospheric temperature	17 countries	1989- 1995	1146	Change of temperature of 5° C was not related to DVT incidence
Brown et al.9	Atmospheric temperature	Scottand	1981- 2001	37336	Incidence of DVT was related to the minimum and maximum temperature
Esquenet et al. ²⁷	Atmospheric pressure	Italy	1995	345	Correlation between atmospheric pressure and DVT
Brown et al.9	Atmospheric pressure	Scottand	1981- 2001	37336	Decrease of atmospheric pressure of 10 millibars related to the increase of DVT incidence
Damnjanovic et al. ²⁸	Atmospheric pressure	South Serbia	2009- 2011	124	Change of atmospheric pressure of 1 millibar was related to the increase of the incidence of lower limb DVT
Baccarelli et al. ²⁹	Air pollution	Italy	1995- 2005	870	Relation between DVT and air pollution
Baccarelli et al.30	Air pollution	Italy	1995- 2005	663	Relation between DVT and air pollution
Dales et al. ³¹	Air pollution	Santiago	2001- 2005	3358	The increased concentrations of ozone, sulphordioxide, nitrodioxide were related to the increased incidence of DVT
Brown et al.9	Rain falls	Scottand	1981- 2001	37336	Increased rain fall caused an increase of DVT
	1				

1981-2001

Scottand

37336