Author/year	Experimental model	Aim	Biological fluid	Analytical platform	Key findings
van Cappellen	Fetal lambs	Investigate if mild	Cerebrospinal	¹ H NMR	Increased choline in severe hypoxia
van Walsum et		hypoxia induces	fluid		• After 2 hours of mild hypoxia and in severe hypoxia,
al/200141		changes in cerebral			levels of lactic acid, alanine, phenylalanine, tyrosine,
		hypoxia			were found increased
Atzori et	Newborn	Characterize the	Urine	¹ H NMR	 Metabolic variations were observed in the urine of
al/201049	piglets	metabolic profiles of			piglets treated with different oxygen concentrations.
	10	newborn undergoing			Discriminant metabolites: urea, creatinine, malonate,
		hypoxia-reoxygenation			methylguanidine and hydroxyisobutyric acid
Solberg et al/	Newborn	Detection of markers of	Plasma	Flow injection	 Ratios of alanine to branched chained amino acids and
201019	piglets	hypoxia		analysis MS/MS	of glycine to BCAA were highly correlated with the
				and	duration of hypoxia
				LC-MS/MS	 Reoxygenation with 100% oxygen delayed centular metabolic recovery.
					 Metabolites of the Krebs cycle (alpha keto-glutarate
					succinate, fumarate) were significantly reduced at
					different rates depending on the resuscitation, showing
					a delay in recovery in the 100% reoxygenation groups.
					 Oxysterols and acylcarnitines showed different
Backstrom at	Newborn	Identify significant	Blood	GCXGC TOFMS	responses to reoxygenation
a1/201122	non-human	metabolites affected by	Biood	UCAUC-IOPMIS	Lactate creatinine succinic acid malate and
al/2011	nrimate.	birth asphyxia			arachidonic acid could help as potential biomarkers
Liu et al/ 201118	Neonatal rats	Distinguish different	Brain slice	¹ H/ ³¹ P NMR	• Metabolites differed in treatment and outcome groups,
		insults, treatments and			especially phosphocreatine, ATP and ADP
		recovery stages after			 ATP levels severely decreased at normothermia,
		applying hypothermia			and restored equally by immediate and delayed
					hypothermia
					• Cell death was decreased by inified ate hypothermia, but was equally substantially greater with
					normothermia and delayed hypothermia
Skappak et	Newborn	Identify hypoxia using	Urine	NMR	 13 urinary metabolites differentiated hypoxic
al/2013 23	piglets	urinary metabolomic			versus nonhypoxic animals (1-methylnicotinamide,
		profiling			2-oxoglutarate, alanine, asparagine, betaine, citrate,
					creatine, tumarate, hippurate, lactate, N-acetyigiycine,
					 Using metabolomic profile, it was able to blindly
					identify hypoxic animals correctly 84% of the time
					compared to nonhypoxic controls
					 Metabolomic profiling of urine has potential for
					identifying neonates that have undergone episodes of
Lin et al/ 2013 ²⁵	Neonatal rate	Distinguish metabolic	Brain slices	¹³ C NMR	NypoXia [2_C]Glutamine increased in the hypothermia group
Liu ci al/ 2015	Incollatal Tats	differences in glia and	Dialii Shees	CINIVIK	compared to delayed hypothermia and normothermia
		neurons			group
					• [3,4-C]glutamate, [2-C]taurine and phosphocreatine
					were mostly associated with adenosine triphosphate
Lin at a1/201251	Noonatal mico	Identify biomerizers and	Drain avtraata		preservation
Liu et al/ 2015	Inconatal Inice	distinguish differences	Dialii extracts		 hypothermia group was separated from non- hypothermia and controls
		applying hypothermia			hypothermita and controls
Fanos et	Piglet model	Investigate metabolomic	Urine	¹ H NMR	 21% of oxygen is the most "physiological" and
al/2014 ²⁰		profiles according to			appropriate concentration to be used for resuscitation
		oxygen concentration			
		(18%, 21%, 40%, and 100%) administered at			
		resuscitation			
Takenouchi et	Neonatal rats	Decipher the	Brain tissue	MS/MS	 107 metabolites were investigated
al/2015 ²⁹		mechanisms through			Hypothermia diminished the carbon biomass related
		which hypothermia			to acetyl moieties, such as pyruvate and acetyl-CoA,
		regulates metabolic			and increased deacetylated metabolites (carnitine and
		brain regions			Utothermia diminished the acetylcholine contents
		orani regions			in hippocampus and amyodala, where carnitine was
					increased

Table 1: Summary	of metabolomic studies in anima	l models of hypoxia/asphyxia	and/or resuscitation protocols.

Chun et al/2015 ³⁹	Non-human primate model	Identify indicators of brain injury, repair and prediction of neurodevelopmental outcome	Plasma	GC×GC-TOFMS	 63 metabolites identified as potential biomarkers 8 metabolites (arachidonic acid, butanoic acid, citric acid, fumaric acid, lactate, malate, propanoic acid, and succinic acid) correlated with early and/or long-term neurodevelopmental outcomes Citric acid, fumaric acid, lactate and propanoic acid correlated with combined outcomes of death or cerebral palsy Circulating metabolome has the potential to predict neurodevelopmental outcome
Solberg et al/2016 ³³	Newborn piglets	Identify early brain hypoxia biomarkers	Plasma	LC-TOFMS	 Increased plasma metabolites at the end of hypoxia, reflecting a metabolic adaptation to prolonged anaerobiosis Metabolite levels returned to base line after resuscitation
Sachse et al/2016 ³⁴	Newborn pigs	Identify biomarkers for subject characterization, intervention effects and possibly Prognosis	Plasma/Urine	NMR	 Plasma and urine metabolites showed severe alterations consistent with hypoxia and acidosis 2 and 4 hours after return of spontaneous circulation Baseline plasma hypoxanthine and lipoprotein concentrations were inversely correlated to the duration of hypoxia sustained before asystole occurred No evidence for a differential metabolic response to the different resuscitation protocols or in terms of survival
Blaise et al / 2017 ⁴⁷	Newborn mice	Investigate the effects of excitotoxicity in metabolome	Brain tissuePlasma	MS	 No difference in plasma metabolic profile The amino acids glutamine, proline, serine, threonine, tryptophan, valine, and the sphingolipid SM C26:1 were increased in the brain. Glycerophospholipids were decreased Metabolomics could identify excitotoxic effects
Brown et al /2017 ³⁵	Newborn mice	Investigate if intrauterine inflammation alters the metabolome of the amniotic fluid, fetal and neonatal brain, and if sex makes difference	Amniotic fluidBrain	LC-MS	 Intrauterine inflammation enhances amino acids and purine metabolites Hypoxanthine pathway metabolites were increased in amniotic fluid. They can be potential biomarkers. Fatty acids pattern differed in neonatal brain in a sex- specific manner

NMR: nuclear magnetic resonance (spectroscopy), MS: mass spectrometry, LC-MS: Liquid Chromatography - Mass Spectrometry, GC×GC-TOFMS: 2-dimensional gas chromatography-time-of-flight-mass spectrometry, LC-TOFMS: Liquid chromatography-time of flight mass spectrometry.