Author/year	Experimental	Aim	Biological	Analytical	Key findings
	model		fluid	platform	
Chu et al/ 2006 ⁵⁶	Asphyxiated neonates	Study the metabolomic profile in urines of neonates with severe asphyxia and subsequent neurodevelopmental handicap	Urine	High throughput MS	 Increased ethylmalonate, 3-hydroxy-3- methylglutarate, 2-hydroxy-glutarate and 2-oxo- glutarate were associated with good neonatal outcome Increased glutarate, methylmalonate, 3-hydroxy- butyrate and orotate were associated with poor outcome
Walsh et al/2012 ⁴²	Newborns with HIE	Investigate the metabolomic profile	Umbilical cord blood	LC-MS/MS	 29 metabolites showed alterations from 3 distinct classes (amino acids, acylcarnitines and glycerophospholipids) 9 metabolites were significantly altered in HIE A model of 5 metabolites clearly delineated severity of asphyxia and classified HIE infants Disruption to energy, nitrogen and lipid metabolism was evident in both asphyxia and HIE
Reinke et al/2013 ²⁴	Asphyxiated neonates	Invastigate pathophysiology of HIE	Umbilical cord blood	'H NMR	 37 metabolites were significantly altered between the study groups Acetone, 3-hydroxybutyrate, succinate, and glycerol were significantly differentially altered in severe HIE A model using 3-hydroxybutyrate, glycerol, O-phosphocholine and succinate predicted HIE severity
Longini et al/2015 ²¹	Asphyxiated neonates	Evaluate the effects of asphyxia on newborn metabolites	Urine	'H NMR	 Lactate, glucose, trimethylamine N-oxide, threonine and 3-hydroxyisovalerate were the metabolites more characterizing the asphyxiated neonates After 24-48 hours from resuscitation, asphyxiated neonates showed a recovery pattern but still could be differentiated from controls

Table 2: Summary of metabolomic studies in human neonates with perinatal asphyxia-hypoxic-ischemic encephalopathy (HIE).

Noto et al/2016 ⁵⁷	Asphyxiated neonates	Identify the metabolome in perinatal asphyxia and to follow changes over time	Urine	GC-MS	 The metabolomic profile of neonates who died after day 7 of life was significantly different from that of survivors
Ahearne et al/2016 ⁵⁸	Infants with perinatal asphyxia and HIE	Investigate if alterations of succinate, glycerol, 3- hydroxybutyrate and O-phosphocholine can predict 3-year neurodevelopmental outcome	Umbilical cord blood	'H NMR	 The metabolite index significantly correlated with outcome, predicting severe outcome and intact survival There was no correlation between the index score and performance in the individual Bayley-III subscales (cognitive, language, motor) The metabolite index was not superior to EEG or the Sarnat score
Deniham et al/2017 ⁴³	Asphyxiated neonates (recovering and developing HIE)	Examine early metabolic alterations in infants recovering perinatal asphyxia vs. those who developed HIE	Umbilical cord blood	FT-ICR mass spectrometry	 Perturbed metabolic pathways and potential biomarkers specific to perinatal asphyxia and HIE were identified, which if measured at birth, may help direct treatment
Sanchez-Illana et al / 2017 ⁵⁰	Newborns with HIE	Determination of lipid peroxidation biomarkers in newborn plasma samples	Plasma	LC-MS	 Isoprostanoids provide predictive power of oxidative stress related pathologies
Sarafidis et al/2017 ²⁶	Asphyxiated term neonates with HIE	Identify metabolic changes in neonates with HIE	Urine	LC-MS/MS	 Asphyxiated neonates were clearly separated from controls Discriminant metabolites involved pyruvic acid, amino acids, acylcarnitines, inositol, kynurenine, hippuric acid and vitamins

MS: mass spectrometry, LC-MS: Liquid Chromatography - Mass Spectrometry, NMR: nuclear magnetic resonance (spectroscopy), HIE: hypoxic-ischemic encephalopathy, GC-MS: gas chromatography mass spectrometry, FT-ICR: Fourier-transform ion cyclotron resonance.